• Skip to main content
  • Architecture
    • Overview
      Learn about VergeOS’ unique unfied architecture that integrates virtualization, storage, networking, AI, backup and DR into a single data center operating system
    • Infrastructure Wide Deduplication
      VergeOS transforms deduplication from a storage-only commodity into a native, infrastructure-wide capability that spans storage, virtualization, and networking, eliminating hidden resource taxes
    • VergeFS
      VergeFS is a distributed, high-performance global file system integrated into VergeOS, unifying storage across nodes, tiers, and workloads while eliminating the need for external SANs
    • VergeFabric
      VergeFabric is VergeOS’s integrated virtual networking layer, delivering high-speed, low-latency communication across nodes while eliminating the complexity of traditional network configurations.
    • VergeIQ
      Unlock secure, on-premises generative AI—natively integrated into VergeOS. With VergeIQ, your enterprise gains private AI capabilities without the complexity, cloud dependency, or token-based pricing.
  • Features
    • Virtual Data Centers
      A VergeOS Virtual Data Center (VDC) is a fully isolated, self-contained environment within a single VergeOS instance that includes its own compute, storage, networking, and management controls
    • High Availability
      VergeOS provides a unified, easy-to-manage infrastructure that ensures continuous high availability through automated failover, storage efficiency, clone-like snapshots, and simplified disaster recovery
    • ioClone
      ioClone utilizes global inline deduplication and a blockchain-inspired file system within VergeFS to create instant, independent, space-efficient, and immutable snapshots of individual VMs, volumes, or entire virtual data centers.
    • ioReplicate
      ioReplicate is a unified disaster-recovery solution that enables simple, cost-efficient DR testing and failover via three‑click recovery of entire Virtual Data Centers—including VMs, networking, and storage.
    • ioFortify
      ioFortify creates immutable, restorable VDC checkpoints and provides proactive ransomware detection with instant alerts for rapid recovery and response.
    • ioMigrate
      ioMigrate enables large-scale VMware migrations, automating the rehosting of hundreds of VMs (including networking settings) in seconds with minimal downtime by seamlessly transitioning entire VMware environments onto existing hardware stacks.
    • ioProtect
      ioProtect offers near-real-time replication of VMware VMs—including data, network, and compute configurations—to a remote disaster‑recovery site on existing hardware, slashing DR costs by over 60% while supporting seamless failover and testing in an efficient, turnkey VergeOS Infrastructure.
    • ioOptimize
      ioOptimize leverages AI and machine learning to seamlessly integrate new and old hardware and automatically migrate workloads from aging or failing servers.
  • IT Initiatives
    • VMware Alternative
      VergeOS offers seamless migration from VMware, enhancing performance and scalability by consolidating virtualization, storage, and networking into a single, efficient platform.
    • Hyperconverged Alternative
      VergeIO’s page introduces ultraconverged infrastructure (UCI) via VergeOS, which overcomes HCI limitations by supporting external storage, scaling compute and storage independently, using existing hardware, simplifying provisioning, boosting resiliency, and cutting licensing costs.
    • SAN Replacement / Storage Refresh
      VergeIO’s storage by replacing aging SAN/NAS systems within its ultraconverged infrastructure, enhancing security, scalability, and affordability.
    • Infrastructure Modernization
      Legacy infrastructure is fragmented, complex, and costly, built from disconnected components. VergeOS unifies virtualization, storage, networking, data protection, and AI into one platform, simplifying operations and reducing expenses.
    • Virtual Desktop Infrastructure (VDI)
      VergeOS for VDI delivers a faster, more affordable, and easier-to-manage alternative to traditional VDI setups—offering organizations the ability to scale securely with reduced overhead
    • Secure Research Computing
      Verge.io’s Secure Research Computing solution combines speed, isolation, compliance, scalability, and resilience in a cohesive platform. It’s ideal for institutions needing segmented, compliant compute environments that are easy to deploy, manage, and recover.
    • Venues, Remote Offices, and Edge
      VergeOS delivers resiliency and centralized management across Edge, ROBO, and Venue environments. With one platform, IT can keep remote sites independent while managing them all from a single pane of glass.
  • Blog
      • After the VMware ExitAfter the VMware Exit, the real opportunity is modernization. Consolidate silos, repatriate costly cloud workloads, and prepare infrastructure for AI with a universal migration path and unifying operating system.
      • Double Infrastructure DisruptionDouble infrastructure disruption hits VMware virtualization and VDI markets simultaneously. Learn how IT professionals can overcome rising costs through unified platforms, eliminating vendor fragmentation.
      • What is Infrastructure-Wide DeduplicationInfrastructure-wide deduplication goes beyond storage arrays and backup appliances by unifying dedupe across storage, compute, and networking. This approach eliminates rehydration cycles, reduces hidden infrastructure taxes, and turns a commodity feature into a strategic business advantage.
    • View All Posts
  • Resources
    • Become a Partner
      Get repeatable sales and a platform built to simplify your customers’ infrastructure.
    • Technology Partners
      Learn about our technology and service partners who deliver VergeOS-powered solutions for cloud, VDI, and modern IT workloads.
    • White Papers
      Explore VergeIO’s white papers for practical insights on modernizing infrastructure. Each paper is written for IT pros who value clarity, performance, and ROI.
    • In The News
      See how VergeIO is making headlines as the leading VMware alternative. Industry analysts, press, and partners highlight our impact on modern infrastructure.
    • Press Releases
      Get the latest VergeOS press releases for news on product updates, customer wins, and strategic partnerships.
    • Case Studies
      See how organizations like yours replaced VMware, cut costs, and simplified IT with VergeOS. Real results, real environments—no fluff.
    • Webinars
      Explore VergeIO’s on-demand webinars to get straight-to-the-point demos and real-world infrastructure insights.
    • Documents
      Get quick, no-nonsense overviews of VergeOS capabilities with our datasheets—covering features, benefits, and technical specs in one place.
    • Videos
      Watch VergeIO videos for fast, focused walkthroughs of VergeOS features, customer success, and VMware migration strategies.
    • Technical Documentation
      Access in-depth VergeOS technical guides, configuration details, and step-by-step instructions for IT pros.
  • How to Buy
    • Schedule a Demo
      Seeing is beleiving, set up a call with one of our technical architects and see VergeOS in action.
    • Versions
      Discover VergeOS’s streamlined pricing and flexible deployment options—whether you bring your own hardware, choose a certified appliance, or run it on bare metal in the cloud.
    • Test Drive – No Hardware Required
      Explore VergeOS with VergeIO’s hands-on labs and gain real-world experience in VMware migration and data center resiliency—no hardware required
  • Company
    • About VergeIO
      Learn who we are, what drives us, and why IT leaders trust VergeIO to modernize and simplify infrastructure.
    • Support
      Get fast, expert help from VergeIO’s support team—focused on keeping your infrastructure running smoothly.
    • Careers
      Join VergeIO and help reshape the future of IT infrastructure. Explore open roles and growth opportunities.
  • 855-855-8300
  • Contact
  • Search
  • 855-855-8300
  • Contact
  • Search
  • Architecture
    • Overview
    • VergeFS
    • VergeFabric
    • VergeIQ
  • Features
    • Virtual Data Centers
    • High Availability
    • ioClone
    • ioReplicate
    • ioFortify
    • ioMigrate
    • ioProtect
    • ioOptimize
  • IT Initiatives
    • VMware Alternative
    • Hyperconverged Alternative
    • SAN Replacement / Storage Refresh
    • Infrastructure Modernization
    • Virtual Desktop Infrastructure (VDI)
    • Secure Research Computing
    • Venues, Remote Offices, and Edge
  • Blog
  • Resources
    • Become a Partner
    • Technology Partners
    • White Papers
    • In The News
    • Press Releases
    • Case Studies
    • Webinars
    • Documents
    • Videos
    • Technical Documentation
  • How to Buy
    • Schedule a Demo
    • Versions
    • Test Drive – No Hardware Required
  • Company
    • About VergeIO
    • Support
    • Careers
×
  • Architecture
    • Overview
    • VergeFS
    • VergeFabric
    • VergeIQ
  • Features
    • Virtual Data Centers
    • High Availability
    • ioClone
    • ioReplicate
    • ioFortify
    • ioMigrate
    • ioProtect
    • ioOptimize
  • IT Initiatives
    • VMware Alternative
    • Hyperconverged Alternative
    • SAN Replacement / Storage Refresh
    • Infrastructure Modernization
    • Virtual Desktop Infrastructure (VDI)
    • Secure Research Computing
    • Venues, Remote Offices, and Edge
  • Blog
  • Resources
    • Become a Partner
    • Technology Partners
    • White Papers
    • In The News
    • Press Releases
    • Case Studies
    • Webinars
    • Documents
    • Videos
    • Technical Documentation
  • How to Buy
    • Schedule a Demo
    • Versions
    • Test Drive – No Hardware Required
  • Company
    • About VergeIO
    • Support
    • Careers

Hyperconverged

May 27, 2025 by George Crump

The hidden costs of HCI often prevent IT professionals, who are looking to exit VMware, from seriously considering the architecture as a viable alternative. Hyperconverged Infrastructure (HCI) vendors capitalize on this scenario, positioning their solutions as streamlined platforms that seamlessly unify virtualization, compute, storage, and networking. However, this initial promise of simplified infrastructure management frequently masks significant hidden costs and complexities.

The hidden costs of HCI

Initially intended to unify infrastructure components, traditional HCI has failed to deliver true integration. Compute, storage, and networking resources remain operationally separate, requiring distinct layers in the form of virtual machines (VMs) communicating with the hypervisor. Commonly deployed solutions utilize separate VMs for storage management (e.g., Nutanix’s CVM or VMware’s vSAN), distinct networking stacks (Nutanix Flow, VMware NSX), and individual management VMs (Nutanix Prism, VMware vCenter). True operational simplification remains elusive; what began as convergence is merely the virtualization of legacy three-tier architectures.

How VergeOS Solves the Convergence Problem

VergeOS achieves true convergence through its ultraconverged design. By integrating storage, networking, virtualization, and data services directly into a unified operating environment, VergeOS eliminates silos and redundant communication layers. This cohesive design simplifies operations, reducing complexity, administrative overhead, and resource inefficiency.

Dive deeper with our on-demand webinar: “Comparing HCI as VMware Alternatives.”


The Efficiency Problem

The hidden costs of HCI include its inability to deliver meaningful infrastructure efficiency. Despite sharing hardware, HCI components remain distinct entities, each consuming substantial resources. Dedicated storage VMs, management VMs, separate networking stacks, and additional abstraction layers cumulatively drain compute cycles and memory. Application VMs running within these infrastructures consequently suffer degraded performance and higher latency, forcing organizations to compensate with additional hardware investment rather than benefiting from the initially promised efficiency gains.

For instance, a typical I/O operation in an HCI environment begins at the hypervisor level, proceeds through a storage controller (virtualized as a separate VM), traverses network infrastructure, and finally reaches physical storage media. Each extra step consumes CPU resources, adds latency, and reduces performance efficiency. As workloads scale, the cumulative impact of these inefficiencies affects application responsiveness and resource utilization.

Some HCI vendors utilize data locality to mitigate some of these issues; however, this technology further complicates operations and negatively impacts performance during node or drive failure.

The hidden costs of HCI

How VergeOS Solves the Efficiency Problem

VergeOS integrates all services, including storage and networking, directly into its operating system, eliminating performance overhead associated with separate management virtual machines or additional software layers. Its lightweight architecture ensures maximum resource efficiency, optimizing performance and dramatically reducing hardware requirements and infrastructure costs.


The High Cost of HCI Inefficiency

The hidden costs of HCI inefficiencies necessitate significant investment in higher-performance hardware to compensate for architectural shortcomings. IT must procure more powerful servers, increased core counts, expanded memory, and faster networking. Furthermore, licensing models that charge per CPU core or capacity exacerbate costs, forcing organizations into substantial capital expenditures. These license models compel customers to purchase less optimal hardware to contain software licensing costs.

How VergeOS Reduces the Cost of Inefficiency

With a streamlined architecture, VergeOS maximizes hardware resource utilization. Its efficient code base and integrated design enable organizations to achieve optimal performance using commodity or existing hardware, reducing initial capital expenditures and ongoing operational expenses. VergeIO licenses VergeOS per-server without penalties for using high-core-count or high-capacity servers.


The High Cost of HCI Data Availability

HCI solutions employ synchronous mirroring—continuous real-time data duplication across nodes—to protect against hardware failures. Vendors commonly refer to redundancy levels as Replication Factor (RF) or Fault Tolerance Level (“failures to tolerate” or FTT). Nutanix refers to protection from one node failure as Replication Factor 2 (RF2), meaning two copies of data are maintained. VMware terms this configuration Failures to Tolerate of 1 (FTT=1).

To protect from two simultaneous node failures or multiple drive failures across nodes, Nutanix uses Replication Factor 3 (RF3)—three data copies—while VMware uses FTT=2. This triple redundancy greatly increases storage capacity and resource requirements. RF3 requires at least five nodes, becoming prohibitively expensive for smaller deployments. In larger environments, limiting resiliency to two node failures is insufficient, as risk increases with node count.

These requirements force prioritizing specific workloads for enhanced protection (RF3), relegating others to standard availability (RF2). Limited redundancy beyond RF3 leads organizations to increase the cluster count per site, resulting in cluster sprawl, which in turn causes additional administrative complexity, higher costs, and uneven availability guarantees.

To maintain performance during node failures, Nutanix and VMware require reserving a portion of resources on each server equal to the capacity of one full node. In a four-server environment, 25% of each server’s resources are reserved for failover, which substantially reduces the available capacity during regular production operations.

How VergeOS Delivers Cost-Effective Data Availability

VergeOS leverages ioGuardian, a deduplicated third-copy data protection method. This efficiently safeguards against multiple simultaneous hardware failures without excessive storage overhead or node count requirements of traditional RF3 implementations. ioGuardian provides robust availability at an economical cost, without requiring workload prioritization, delivering superior resilience at a lower price and complexity.

No reservation of server resources is required. If a node fails, VergeIO’s ioOptimize technology intelligently and automatically reallocates affected VMs to other nodes based on each VM’s resource demands and available server capacities.


The High Cost of HCI Data Protection

The Practice of Snapshotting

Snapshotting commonly provides additional recovery points beyond the capabilities of backup software. However, snapshot-intensive environments impose severe performance penalties, resulting in increased storage I/O and network resource demands. Frequent snapshots or long-term snapshot retention require complex metadata management, demanding more powerful servers, additional memory, and faster storage media. This results in escalated hardware and licensing costs, especially in per-core or per-capacity licensing models common to HCI.

Snapshot chains or numerous simultaneous snapshots greatly increase complexity, hindering disaster recovery processes. Restoring across heterogeneous hardware or hypervisor environments becomes challenging, restricting operational flexibility.

How VergeOS Simplifies Data Protection

VergeOS utilizes ioClone technology, integrated with its global inline deduplication, to create space-efficient, independent snapshots with minimal metadata overhead. ioClone’s architecture supports near-continuous snapshot execution and indefinite retention without performance degradation, enabling rapid and efficient data protection without the need for costly hardware upgrades or complex snapshot management. The combination of ioGuardian and ioClone also reduces the organization’s dependency on backup, lowering the costs of backup software licensing and backup hardware infrastructure.

The High Cost of HCI Inflexibility

The hidden costs of HCI architectures imposing strict hardware compatibility and homogeneity requirements are significant. Expanding storage or compute resources mandates identical hardware, limiting flexibility and increasing long-term infrastructure costs. Adding nodes of different brands, generations, or capabilities creates additional clusters, which fragment management and reduce efficiency.

How VergeOS Enhances Infrastructure Flexibility

VergeOS supports heterogeneous hardware environments, enabling organizations to integrate diverse hardware configurations into unified, scalable clusters seamlessly. This flexibility reduces costs, simplifies expansion, and maximizes investment longevity, enabling adaptive infrastructure growth without imposed constraints on homogeneity.

overcome the hidden costs of HCI inflexibility


An Example of The Hidden Costs of HCI vs. VergeOS

Consider a three-node infrastructure using traditional Hyperconverged Infrastructure (HCI), where the organization’s goal is to maintain continuous data availability even after two simultaneous node failures. Traditional HCI solutions, such as Nutanix or VMware vSAN, require at least five nodes configured with Replication Factor 3 (RF3), or a Fault Tolerance Level of 2 (FTT=2), ensuring continuous availability despite two node failures. In addition, these solutions require maintaining sufficient free storage capacity at all times to accommodate a complete rebuild in the event of node failures, thereby reserving capacity equivalent to an entire node, which further reduces usable storage space.

Because the customer wants to leverage their existing hardware—a heterogeneous mix of Dell and HPE servers—traditional HCI platforms present immediate compatibility and cost challenges. Traditional HCI requires uniform hardware for seamless operation, which adds complexity and cost.

Cost Analysis for Traditional HCI

Achieving protection from two simultaneous node failures requires:

  • Minimum Node Count: 5 nodes (uniform hardware required).
  • Replication Method: RF3 or FTT=2 (three synchronous copies of all data).
  • Usable Capacity: Reduced to approximately 33% due to triple mirroring overhead.
  • Reserved Free Capacity: Additional storage space equal to one node’s full storage capacity, always kept available to allow immediate rebuilds after failures.

In this scenario, the customer faces:

  • The necessity of purchasing additional uniform hardware due to vendor compatibility guidelines.
  • Higher software licensing costs, typically calculated per CPU core.
  • Significant reserved resources on each node (compute and storage) are allocated exclusively for node failure scenarios.

This dramatically increases capital and operational expenses, requiring significant investment in new hardware and licenses, thereby negating the anticipated HCI savings.

Cost Analysis with VergeOS

In the same scenario, VergeOS offers substantial advantages:

  • Minimum Node Count: 3 nodes (uses existing Dell and HPE hardware).
  • Replication Method: Integrated distributed mirroring combined with VergeOS’s independent, deduplicated third data copy via ioGuardian, which can be installed on any available standby server.
  • Usable Capacity: Approximately 50% (due to two-way mirroring), augmented by ioGuardian’s deduplication efficiency.
  • Reserved Free Capacity: Minimal additional storage capacity needed due to ioGuardian’s efficient data protection strategy, reducing rebuild space requirements compared to traditional RF3 architectures.

With VergeOS, you benefit from:

  • No need for uniform hardware, allowing immediate use of existing Dell and HPE servers.
  • Reduced licensing and hardware costs, as no additional nodes or extensive resource reservations are required.
  • Enhanced data availability beyond traditional two-node failure protection without extensive reserved storage, reducing overhead and complexity.


Summary of Cost Benefits

Traditional HCI requires two additional nodes (totaling five) and mandates uniform hardware, increasing both capital and operational expenses, compounded by large reserved capacity requirements for rebuilding data. VergeOS provides superior resilience, operational continuity, and cost efficiency by leveraging existing heterogeneous hardware and substantially reducing the need for reserved rebuild capacity.

Conclusion

While hyperconverged infrastructure initially promises simplicity, efficiency, and cost savings, underlying architectural limitations quickly surface as substantial hidden costs. Challenges such as insufficient convergence, operational inefficiencies, costly availability and protection schemes, and restrictive infrastructure flexibility erode promised benefits. Organizations should carefully assess these hidden costs when evaluating HCI solutions, prioritizing converged, integrated infrastructures like VergeOS that fundamentally address these critical challenges, enabling efficient, cost-effective, and future-ready IT environments.

Register for our HCI Data Availability Analysis

Filed Under: HCI Tagged With: Alternative, HCI, Hyperconverged, UCI, VMware

May 12, 2025 by George Crump

Comparing VMware Alternative Storage

As part of a VMware exit, comparing the VMware alternative storage capabilities is as important as selecting an alternative hypervisor for the organization’s future infrastructure software. Organizations typically examine Nutanix’s Controller Virtual Machine (CVM) architecture against VergeIO’s integrated VergeFS storage within VergeOS. Although both approaches virtualize SAN functionality onto the same servers, creating a virtual SAN (vSAN), the two designs differ. These differences impact resource utilization, operational complexity, stability, and costs.

Understanding vSAN Resource Efficiency

Nutanix employs a storage-as-a-VM architecture using a dedicated CVM running on each node. This CVM consumes substantial resources—between 16GB and 32GB of RAM or more, alongside multiple virtual CPUs (up to 22 vCPUs per node). This significant resource footprint reduces available capacity for production workloads, driving higher infrastructure costs and decreasing resource efficiency, particularly in smaller environments.

VergeIO integrates storage directly into VergeOS via its VergeFS file system, eliminating the need for dedicated controller VMs. This integration ensures more node resources remain available for production workloads, improving resource efficiency without requiring additional hardware investments.

Sizing and Stability of vSAN Alternatives

Sizing complexities are inherent in Nutanix’s CVM-based model. Determining the ideal CVM size is critical yet challenging. Undersized CVMs lead to bottlenecks or instability, while oversized CVMs consume unnecessary resources. Nutanix users sometimes experience stability issues such as random CVM reboots, leading to a reactive response rather than root-cause analysis from support teams.

VergeIO’s integrated storage approach within the OS kernel eliminates these sizing complexities, providing predictable and stable performance without the risk of bottlenecks or instability. This inherent stability reduces operational overhead, making VergeIO a reliable VMware alternative with minimal administrative intervention.

Understanding vSAN: Performance

Comparing VMware Alternative Storage

When under load or insufficiently resourced, Nutanix’s CVMs negatively impact VM performance on the same node, leading to broader performance degradation across the cluster. VergeIO’s integrated approach ensures stable and consistent resource utilization, avoiding disruptions and translating directly into improved cluster reliability and responsiveness.

VergeIO consistently publishes detailed performance benchmarks, demonstrating VergeOS’s real-world capabilities. Nutanix, in contrast, has provided minimal transparency regarding vSAN performance. While no benchmark perfectly represents every customer scenario, VergeIO’s results offer valuable insights.

Recent VergeOS performance benchmarks show impressive outcomes, including over 1.5 million read IOPS, 23 GB/s throughput on a 25 GB/s network, and realistic 64k block sizes at less than one penny per IOPS. Independent testing by StorageReview demonstrated VergeOS handling 1,000 virtual desktops booting in 71 seconds. These benchmarks substantiate VergeIO’s superior performance and transparency claims compared to Nutanix.

Management and Troubleshooting a VMware Alternative

Nutanix’s separate CVM introduces additional management complexity, requiring administrators to monitor, maintain, and troubleshoot an extra software layer. Issues such as CVM reboots or resource contention complicate troubleshooting, increasing operational burdens.

By removing the separate CVM layer, VergeOS simplifies operations. Administrators gain straightforward monitoring, simplified diagnostics, and faster issue resolution, all integrated transparently within VergeOS.

Understanding vSAN Controller Resiliency

A key consideration when comparing the VMware alternative storage capabilities is how the solution handles resiliency. Nutanix promotes its distributed “leader” CVM architecture, allowing any node to assume cluster leadership. However, this approach offers limited practical advantage, as additional leader nodes beyond simultaneous node failure tolerance are redundant. Nutanix clusters configured with RF3 can survive two simultaneous node failures, reducing the practical value of additional leaders.

VergeIO’s ioGuardian provides redundancy and resilience beyond traditional N+2 redundancy. While conventional three-way mirroring (N+2) continuously replicates data across three nodes, ioGuardian enhances protection by maintaining an independent, deduplicated third copy, stored separately from the primary mirrored dataset. This highly available backup replaces traditional backups and becomes integral to your continuous availability strategy.

IoGuardian seamlessly and transparently serves data back to the production environment in real time during multi-node or multi-drive failures, even exceeding two nodes. Affected virtual machines instantly retrieve the necessary data from the ioGuardian storage, eliminating downtime and ensuring uninterrupted operations without manual intervention or complex recovery workflows.

Combining immediate real-time data availability, reduced infrastructure overhead, and simplified management, ioGuardian substantially surpasses the protection and operational simplicity achievable with standard N+2 redundancy approaches.

How a vSAN Impacts TCO

Nutanix’s CVMs impact total cost of ownership (TCO) beyond licensing. They require substantial resources, necessitating larger hardware configurations, increasing capital expenditures, and increasing ongoing licensing expenses.

In contrast, VergeIO’s integrated VergeFS reduces the software footprint, simplifies licensing with straightforward per-server pricing, and optimizes existing or commodity hardware. This approach considerably lowers infrastructure costs, positioning VergeIO as a cost-effective VMware alternative storage solution.

Summary of VergeOS Advantages

Comparing VMware alternative storage capabilities reveals that VergeIO’s integration of VergeFS into VergeOS provides significant practical advantages over Nutanix’s CVM-based storage model. It maximizes resource efficiency, ensures consistent and reliable performance, simplifies management, and reduces infrastructure and licensing costs. These combined advantages position VergeIO as an attractive VMware alternative storage solution, ideal for organizations seeking efficiency, stability, simplicity, and cost-effectiveness.

To further explore VMware alternative data availability and see these considerations in action, join our upcoming VergeIO webinar. Our experts will provide an in-depth comparison of hyperconverged and ultraconverged architectures, highlighting performance benchmarks, operational simplicity, and cost-efficiency. Register now to ensure your infrastructure decisions align with your organization’s strategic priorities.

Our latest white paper, “HCI Data Availability Analysis,” delves into the crucial issue of maintaining availability in Hyperconverged and Ultraconverged architectures by comparing how Nutanix and VergeIO ensure data access during hardware failures.

Filed Under: HCI Tagged With: Hyperconverged, Storage, UCI

June 26, 2024 by George Crump

There are best practices that on-premises IT can learn from MSPs to streamline operations, improve responsiveness, and enhance efficiency simply by applying them. Managed Service Providers (MSPs) and Cloud Service Providers are adept at navigating a rapidly evolving technological landscape, under constant pressure to lower costs. They excel in efficiency, scalability, and security across numerous customers while focusing on cost management, data resiliency, and disaster recovery.

Live Interview and Demo Thursday, June 27th at 1:00 PM ET / 10:00 AM PT – Register Now!

Modernized infrastructure software is critical in enabling MSPs and On-Premises IT to meet these challenges. Modernized infrastructure software combines virtualization services delivered via a hypervisor, storage services, networking services, and cloud services like multi-tenancy.

Applying MSP/CSP Best Practices for Server Longevity

While MSPs/CSPs provide infrastructure to their customers on a subscription basis, they, in most cases, must pay for the hardware upfront. The longer they can extract useful life from that hardware, the better the return on its investment. Maximizing hardware longevity requires infrastructure software with low overhead that leaves more of the available compute resources for customer virtual machines (VMs). It also requires software abstracted from the hardware so that it does not have to remove support for specific hardware configurations as they age and the software advances. Nothing is more frustrating and wasteful than having hardware idle because the software no longer supports it.

In terms of resiliency, the infrastructure software must move beyond no single point of failure, to multiple points of redundancy. Aging hardware is more likely to fail than new hardware; also, maintaining aging hardware under a service contract is more expensive. The infrastructure software should deliver such high levels of redundancy and availability that older servers can run until they fail, and when they fail, there is minimal disruption to operations. This capability also requires the software to be able to mix servers within the infrastructure from different server brands, processor generations, and storage configurations.

On-Premises Server Longevity

On-premises IT can learn from MSPs and use a similar strategy. In these data centers, there are often more than enough computing resources, and the only reason for a server refresh is to maintain warranty coverage. Suppose the infrastructure software can enable these servers to operate safely and with support beyond their original warranty. In that case, the on-premises IT operator can meet the challenge of flat or shrinking IT budgets. If the infrastructure software can also support the intermixing of new and old servers on-premises, IT can gradually add servers to the infrastructure, finally ending the never-ending cycle of storage refreshes and mass migrations.

VergeOS Extends The Life of Servers

VergeOS is unique in infrastructure software. Instead of creating an “IT stack” of loosely coupled software applications, we tightly integrated all infrastructure services into a single code base. This code base includes all the services required for infrastructure, including virtualization services, storage services, networking services, and cloud services. The integration enables VergeOS to deliver near-bare-metal CPU performance, outperform dedicated all-flash arrays, and maximize network efficiency.

VergeOS is also highly portable. It runs on your existing hardware. Its unprecedented level of abstraction from the hardware means that within the same instance, it can support servers of different brands, CPU generations, and storage media types. Six-year-old servers can run alongside six-month-old servers with operational simplicity. As a result, IT can scale its environment from two nodes to over 200 servers within a single instance, and those nodes can come from various server manufacturers with different configurations.

on-premises IT can learn from MSPs

Lastly, VergeOS is resilient. High availability is built into the software. It protects from drive and server failures, and ioGuardian extends the resiliency to withstand multiple drive failures and near-catastrophic server outages. Its Virtual Data Center (VDC) tenant technology, popular with MSPs to isolate customers, also simplifies disaster recovery for on-premises IT because it encapsulates the entire data center as a single, consistent object that makes replication and recovery at a remote site work the first time every time.

Applying MSP/CSP Best Practices for Data Center Density

Successful MSPs/CSPs face the challenge of building highly compact data centers. On-premises IT can learn from MSPs because, like them, they are always looking for ways to reduce their physical footprint, which lowers power and cooling costs. MSPs must also maximize the number of VMs per physical host without compromising performance. This requires an infrastructure software solution that doesn’t burden CPU resources, protects against the disruptive effects of ‘noisy neighbors,’ and has a licensing model that doesn’t penalize customers for investing in robust, dense, quad-processor servers. No one in IT wants to have to explain why the software is twice the price of the hardware.

On-Premises IT Density

On-premises IT operators can benefit from a similar strategy. Imagine cutting the physical server count by two-thirds. While quad-processor servers are more expensive than dual-processor servers, you will need fewer of them, so there is a significant opportunity to reduce server acquisition costs, which will lower power and cooling costs. Using highly dense servers to decrease footprint generally has two problems. First, most infrastructure software solutions are licensed by the number of cores, often making the software more expensive than the server itself.

The second problem is managing potentially double the number of VMs per physical server and protecting against the “noisy neighbor” problem. Most infrastructure software solutions are complex and limited in their ability to isolate workloads.

VergeOS Delivers Affordable Density

VergeOS solves the licensing and noisy neighbor problems. First, it is licensed by the physical host, not by the number of processors or cores. Customers can use the most potent servers without fear of a software penalty. Second, it enables on-premises IT to allocate specific physical hardware resources to specific VDCs. Mission-critical or performance-sensitive workloads could be placed in a particular VDC, and resources could be hard allocated to those VDCs and made available exclusively to those workloads.

Applying MSP/CSP Best Practices for Security

Security is a, if not the, top concern of MSPs. If, for example, ransomware sneaks its way into their environment because of a careless customer, all the customers in their environment could potentially be impacted. They must ensure they invest in capabilities to detect an attack, minimize its impact, and rapidly recover customers in the event of a ransomware detonation. MSPs are looking to move away from the multiple-point solutions they are using to protect and recover from the various attack angles. Instead, they are looking for software that takes an infrastructure-wide approach that is resilient to an attack and can aid recovery.

On-Premises IT Security

On-premises IT can learn from MSPs’ attention to security details. Ransomware protection and recovery are priorities for all organizations, not just MSPs. While the scope of the ransomware event may not be as broad, on-premises IT doesn’t have the same time, budget, or personnel available as MSPs. In addition to the MSP requirements of limiting the attack surface, detection, and recovery, simplicity must be added to the on-premises IT requirements.

VergeOS Delivers Ransomware Resiliency

Storage Features Only

VergeOS takes an infrastructure-wide approach to ransomware protection and recovery. First, it uses multi-factor authentication for all login attempts. Second, when VergeOS is installed, it is installed read-only so that it cannot be modified during an attack. When a VDC is created, a read-write copy of VergeOS is placed inside the VDC. If the OS within the VDC is ever compromised, a quick refresh of the VDC loads a new copy of VergeOS. Each VDC is firewalled off from the others, so an attack within the VDC will not spread to other VDCs. Our alert subscription technology powers our ioFortify product, and you can build an alerting mechanism that allows you to receive near real-time notifications in the event of an attack. We’ve demonstrated this capability on multiple live webinars where we’ve detected an attack within five minutes. Finally, our snapshots are read-only and protected from attack.

All of these capabilities work together to enable you to limit the spread of an attack, detect an attack quickly, and recover to the last known good snapshot prior to the attack within minutes. A typical recovery time for a VergeOS customer to successfully recover from and eliminate a ransomware attack is less than thirty minutes.

Conclusion

On-premises IT can learn from MSPs by adopting their best practices. These practices enhance efficiency, scalability, security, and cost management. Modern infrastructure software, like VergeOS, integrates virtualization, storage, networking, and cloud services, extending server longevity and supporting diverse hardware configurations while ensuring high availability and reducing the need for frequent server refreshes. This approach achieves greater data center density with efficient resource utilization and cost-effective licensing models. VergeOS enhances security with features like multi-factor authentication, read-only OS installations, and isolated Virtual Data Centers (VDCs), ensuring rapid recovery from cyber threats.

Filed Under: MSP Tagged With: Hyperconverged, MSP, ransomware

April 16, 2024 by George Crump

IT professionals often reject hyperconverged infrastructure (HCI) because they want to integrate HCI into their traditional three-tier architecture, and most HCI solutions can’t meet this requirement. HCI vendors also only focus on three tiers of the typical data center: networking, virtualization, and storage. However, a fourth tier is far too often overlooked: data availability and protection.

VergeOS’ Ultraconverged Infrastructure (UCI) can integrate into a customer’s traditional three-tier architecture. In this article, we will cover how VergeOS enables a more gradual onramp to UCI instead of a complete overhaul on day one and allows you to use components from each of your existing tiers.

UCI, an HCI Solution You Actually Want

Integrate HCI into a Three-Tier Architecture

The concept of HCI has merit. Take the data center tiers running on dedicated, vendor-provided hardware and reenable them as software, converging that software onto a single commodity server, liberating the organization from vendor lock-in and markups. The problem faced when IT attempts to integrate HCI into a traditional three-tier architecture is that HCI doesn’t truly converge anything. HCI stacks these tiers as software packages on top of each other, essentially recreating the same technology stack within a single server. It also forces them to exclude external SANs and existing servers.

UCI changes this by collapsing these stacks into a single, cohesive operating environment that is significantly more efficient. This elegant code base reduces overhead by as much as 30% while improving performance. The result is a VMware Alternative that is more portable, performs better, and provides improved data resilience.

UCI, an HCI Solution That Supports Fibre Channel SANs

One of the largest investments in the data center is the storage tier. If you have hundreds of thousands of dollars invested in a fibre-channel (FC) storage area network (SAN), you will want to integrate HCI into your traditional three-tier architecture so that you can continue to benefit from your significant investment. The problem is that most HCI solutions don’t support them. Because VergeIO owns all the code within VergeOS at a very deep level, we have taken the necessary steps to support fibre-channel-attached storage.

Click to Register

When using VergeIO and a FC SAN, you’ll need a physically local drive in each server to load VergeOS and store metadata, but the VM data can reside on the FC array. You’ll create a LUN as a virtual drive for each node that contributes to storage for the VergeOS instance. The VergeOS will manage and aggregate virtual drives into a pool that the VMs can use for data storage. VergeOS will also provide an additional layer of protection from hardware failure and add a deduplication capability. If your array already has deduplication, you can turn it off or leave it on; we’ve been unable to measure any noticeable performance impact.

In the future, when it is time to add additional capacity to the environment, you have options. First, you can continue to add capacity to your existing FC array, or you can take advantage of the 10X cost savings of using internal server class NVMe SSDs and/or HDDs. Also, as new storage technologies come to market, there is a much higher likelihood of them being supported sooner under VergeOS than waiting for the storage vendor to retrofit their designs to support them.

UCI, an HCI Solution That Supports Blade Servers

VergeOS is unique in that it can run a variety of different servers within the same instance. You can mix different server manufacturers, processor generations, and even processor manufacturers (Intel and AMD). You can also mix different server configurations. Some servers can be storage-heavy, and others can be processor-heavy.

Integrate HCI into a Three-Tier Architecture

Blade servers are processor-heavy nodes because they can only support a limited amount of internal storage. This makes blade servers problematic for IT professionals looking to integrate HCI into a traditional three-tier architecture. It forces them to reconsider the server strategy, which blade server customers are reluctant to do.

To incorporate a blade server into the VergeIO instance, you need to have either one internal drive store to boot VergeOS, or VergeOS also supports PXE booting, so an internal drive is not required. From there, the blade server can access its data from the shared pool of storage that VergeOS creates from the other nodes, or in the aforementioned FC SAN. In fact, if the blade server is FC equipped, it can “contribute” storage to the overall instance by assigning it a LUN as described above. Hosting storage does require slightly more RAM, so it is best to review the exact configuration with our technical architects.

As is the case with storage, VergeOS brings added flexibility for server expansion or refreshes. When it comes time to upgrade or expand your server infrastructure, you can continue to add blade servers or use standard 1U, 2U, or larger commodity servers of your choice.

UCI, an HCI Solution That Supports External Networks

Integrate HCI into a Three-Tier Architecture

VergeOS has a robust set of layer 2 and layer 3 networking functionality, but its use is optional. If you’ve invested in one of the market leaders for networking functionality, VergeOS can easily interoperate with them. As with the above, as time goes on, you can decide to use some of the network functionality built into VergeOS, saving you the cost of additional dedicated appliances, or you can continue to use your current vendor. To learn more about VergeOS, watch our Networking Fundamentals video.

UCI, an HCI Solution That Supports Third-Party Backup

VergeOS’ Data Availability Services combined with ioGuardian capabilities lessen IT’s dependency on the backup infrastructure for most recovery efforts, and many customers decide that is all the protection they need. VergeOS provides an in-guest agent that can quiesce when applying consistent snapshots. Still, some customers want to use third-party backup solutions to meet these requirements:

Copy of Last Resort

VergeOS can export the VMs’ raw files via an NFS mount point that almost any backup product can browse to meet compliance or vendor-independent data copy requirements to a different storage system, even tape.

File Level Restoration

As we show in this video, several types of file-level restoration can be done by leveraging VergeOS snapshots. Customers who want a centralized file-level recovery can install an in-guest agent from their backup software application into the virtual machines that are likely to require single-file recoveries.

Again, most customers find they can meet 100% of their data protection and recovery needs using VergeIO. Still, its support of third-party backup products enables IT to continue to use these solutions if required, or until they gain full confidence in VergOS’ capabilities.

Conclusion

Schedule a Technical Deep Dive on VergeOS

VergeOS’ Ultraconverged Infrastructure (UCI) effectively addresses the challenges of integrating HCI into a traditional three-tier architecture by supporting diverse hardware, including blade servers and FC SANs, and offering robust networking capabilities and data protection. As a versatile VMware alternative, VergeOS truly converges data center tiers into an efficient environment, allowing organizations to leverage existing investments and adapt to future technologies. This combination of compatibility, enhanced performance, and cost savings makes VergeOS’ UCI a very practical choice for modernizing IT infrastructure.

Filed Under: Storage Tagged With: HCI, Hyperconverged, UCI

January 20, 2024 by George Crump

Many IT Professionals disqualify Hyperconverged Infrastructure (HCI) as a VMware Alternative because they feel that overcoming HCI shortcomings is more expensive than continuing to use legacy three-tier architectures. These shortcomings are in areas where HCI was initially intended to excel: price, performance, scalability, and simplicity.

Overcoming HCI shortcomings led the VergeIO team to start from a clean slate and create the industry’s first UltraConverged Infrastructure (UCI) solution, VergeOS. It provides a superior, cost-effective alternative to HCI and the traditional three-tier infrastructure. Watch our on-demand webinar, “Beyond HCI” for a comparison of VergeOS’ UCI to the VMware and Nutanix HCI solutions.

In this article, we will explore the critical shortcomings of HCI, which lead IT planners to continue to leverage dedicated infrastructure, and how UCI overcomes them.


Can HCI Deliver Better CPU Performance?

The short answer is no. HCI can’t outperform the traditional three-tier architecture, which has dedicated hardware powering each tier. The reason is that HCI uses shared hardware to power at least four separate software packages, to deliver:


1) A package that contains the core operating system and the hypervisor.
2) A package that contains the storage software.
3) A package that contains the network software.
4) A package that contains the management software.

Each of these packages consumes CPU resources, and HCI’s lack of integration between them means it discards the potential gains in efficiency that combining them into a single code base would deliver. IT must install these packages as separate entities, making installation more complex. Then, once they are all installed and running and IT is ready to create a VM for the organization instead of for infrastructure, they’ve already lost as much as 20% of the CPU resources. To compensate, HCI requires the purchase of more powerful (and expensive) servers.

Another challenge is that as your application executes within the VM, it is probably running through much of the above stack. It uses the CPU to process requests from users. It is using storage IO to read and write data. It is using network resources to receive that input and deliver results. Finally, the VM’s health is reported to a management console in order to report on its health. Each transaction that the application executes is mired down in overhead.

The inefficiency of the code base forces HCI vendors into a predictable pattern of making customers buy turnkey hardware and software solutions from them, or buy new hardware using a strict hardware compatibility matrix. The required hardware must also be overpowered to compensate for the inefficiency, increasing costs.

UCI Delivers Near Bare Metal Performance

Can HCI Deliver Better CPU Performance

The fundamental difference between UCI and HCI is that UCI goes the extra step and eliminates the four separate software modules listed above. Instead, it integrates them into a cohesive code base, increasing resource efficiency. VergeIO typically uses less than 3-5% of CPU resources. The efficiency of resources also improves each VM transaction since no layers of code are involved in each request.

VergeIO customers consistently report measurable improvement in performance-demanding VMs and increased VM density while using existing hardware. Many VergeIO customers even report virtualizing formerly bare metal workloads and seeing a performance improvement.

Can HCI Deliver Better Storage Performance?

Concerns over storage performance are the number one reason customers will disqualify HCI in favor of dedicated three-tier architectures. Storage performance and storage scalability are very legitimate concerns for HCI vendors. First, most HCI vendors don’t use their own storage software. Often, they use an open-source solution like ZFS or CEPH, which were not designed for the unique requirements of providing storage services to a virtualized infrastructure. The solution remains convoluted even if they have their storage code.

Because of the lack of integration, HCI vendors have stumbled through implementing advanced drive failure protection and storage efficiency algorithms like deduplication. Adding these capabilities post-facto adds another layer to an already complex combination of software. For this reason, most vendors force customers to choose between storage efficiency and advanced drive redundancy.

Can HCI Deliver Better Storage Performance

UCI Delivers Better Storage Performance

The storage performance delivered by a UCI solution like VergeOS can outperform an HCI solution and a dedicated storage array while significantly reducing the storage cost. VergeOS correctly balances storage efficiency and storage performance. Its deep integration into the core software enables features like drive failure protection and global inline deduplication to work without adversely impacting performance.

Can HCI Deliver Better Scale?

By its very nature, HCI is scale-out, so scale should be an advantage, but once again, it falls short. Most HCI solutions require three servers (nodes) to start. It forces many small data centers to use two servers and a SAN or NAS. Many of these customers would benefit from a simple two-node solution that includes all the storage and networking functionality within those nodes.

HCI also doesn’t meet the scaling demands of enterprises. Most HCI solutions can only scale to eight nodes per instance before network traffic becomes challenging. They also have to buy similar nodes with each upgrade. If their needs change, they have to start an entirely separate instance of the HCI environment. As a result, many customers opt for the legacy three-tier architecture because each tier can be scaled independently of the other.

UCI Delivers Better Scale

Overcoming HCI shortcomings requires an infrastructure that is flexible and can adapt to the changing demands of the organization.

As we explain in our article “The Full Value of Scale”, a UCI solution like VergeOS delivers a three-dimensional scale. It can start with as few as two nodes, making it ideal for small data centers and remote offices, but it can also scale to hundreds of nodes to meet the needs of the most demanding enterprise. Nodes within the VergeOS instance can be different from each other. Customers can use nodes that provide balanced compute and storage, or mainly compute, or mostly storage, have GPUs installed, or any combination of the above.

Why is HCI More Expensive than Legacy Three Tier?

HCI should have a significant price advantage over legacy three-tier infrastructure. By definition, it is supposed to use off-the-shelf commodity servers, storage, and network hardware. However, this is seldom the case. Under the guise of “making it easy to install and support,” these vendors either require you to buy a turnkey hardware and software solution from them, require you to buy a specific configuration from one of their “certified” hardware vendors, or have a rigorous hardware compatibility list.

The inefficiency of layering virtualization software, storage software, and networking software as three separate software packages also drives up the cost of HCI. Customers must buy much more powerful nodes to support the additional overhead.

UCI Delivers Better TCO and ROI

Overcoming HCI shortcomings requires an infrastructure that can deliver the promise of reduced cost and simplified operations.

VergeOS’ tight integration of the hypervisor, storage, and networking software means customers can actually use off-the-shelf storage from whichever vendor they choose. This flexibility means there is no need to pay a premium for a so-called turnkey solution. Additionally, because VergeOS is licensed by the physical server, not the contents of that server, as you scale your environment, you can use quad-socket servers with massive core counts and not get crushed in licensing costs.

As we discuss in our article “The High Cost of Dedicated Storage”, VergeOS also dramatically lowers the cost of storage. You can use off-the-shelf server-class flash and hard disk drives, eliminating the 5X to 10X markup levied by dedicated storage array vendors.

The savings even follow through to the network. With VergeOS, you can use off-the-shelf commodity switches. When ready, you can replace dedicated network appliances like firewalls with VergeOS’ built-in L2 and L3 networking capabilities.

Conclusion

In conclusion, Hyperconverged Infrastructure (HCI) makes a poor foundation for an alternative to VMware, particularly in CPU performance, storage efficiency, scalability, and cost. Despite HCI’s initial promises of simplifying operations and reducing costs, it typically fails to meet these objectives due to its inherent inefficiencies.

Yet the cost and complexities of three-tier architectures remain. This has led to the development of VergeIO’s UltraConverged Infrastructure (UCI), which addresses HCI’s shortcomings as well as the three-tier challenges. VergeOS integrates infrastructure software modules into a single, cohesive codebase, enhancing performance and scalability while reducing costs. As such, it presents itself as a more viable solution for customers seeking a VMware alternative as well as for those seeking a simpler, more scalable data center infrastructure.

Learn More

  • Schedule a Technical Deep Dive on the UCI Architecture
  • Set up a Test Drive of VergeOS

Filed Under: HCI Tagged With: HCI, Hyperconverged, UCI

May 23, 2023 by George Crump

VMware’s recent price increases, a singular focus on large accounts, and declining support quality have IT professionals within small to medium-sized data centers looking at HCI as a VMware alternative. To provide that alternative hyperconverged infrastructure (HCI), solutions must deliver on a set of crucial requirements, or the organization may find itself in a worse position than putting up with the state of VMware affairs.

Top Three Requirements for HCI as a VMware Alternative

  1. Use a non-VMware Hypervisor at a lower cost
  2. A seamless VMware Exit
  3. Provide a superior data protection experience

    HCI VMware Alternatives Can’t Run VMware

    While it may seem obvious that using HCI as a VMware alternative requires not using VMware as your hypervisor, most HCI solutions on the market require VMware. These HCI products are not HCI at all; they are software-defined storage solutions (SDS) that run as a virtual machine (VM) within VMware.

    These SDS, as HCI solutions and their customers, are still entirely at the mercy of VMware’s pricing and support antics. In addition, by running storage as a VM instead as an equal citizen to the hypervisor, the storage performance on these solutions is subject to the same virtualization tax as any other application running within a VM. This tax can impact I/O performance by as much as 25%. Even HCI solutions that don’t use VMware, if they are running storage as a VM, which most do, are subject to a similar tax.

    The Impact of the Virtualization Tax on Storage

    This tax requires IT professionals to spend more money on hardware. They must configure more nodes with more powerful processors, cores, and the highest possible performance flash drives. The requirement to buy more nodes with more processing power also increases the HCI software license cost. HCI solutions that require VMware, or use an alternate hypervisor, or run storage as a VM may not be cheaper than VMware.

    VergeOS Minimizes the Virtualization Tax

    VergeIO took a different approach than other vendors. Instead of creating a storage solution within a VM, we created a data center operating system (DCOS). This data center operating system, VergeOS, integrates the hypervisor, storage, and networking into a single code base. Storage and networking are equal citizens to the hypervisor. VergeOS is an Ultraconverged Infrastructure (UCI) and is superior to standard HCI solutions.

    The result is a highly efficient operating environment that requires less physical hardware. We repeatedly hear from our customers that they see significantly better performance and can increase VM density after switching to VergeOS, even though they are running on the existing hardware that used to run VMware. To learn more about the efficient VergeOS architecture, watch this on-demand LightBoard session with our Founder and CTO, Greg Campbell.

    HCI VMware Alternatives Require a Seamless Exit

    Using HCI as a VMware alternative to save money and improve performance is very appealing. Still, the project will never take off if the effort to transition the infrastructure is too great. HCI solutions must provide a seamless transition to the new hypervisor. Besides potential performance differences, the user and application experience is mostly unchanged. They still run the same operating system within a VM, now managed by a different hypervisor.

    It is essential, though, that the transition to a VMware alternative is also easy on IT. Most HCI VMware alternatives require a complete shutdown of the VMware environment while migration occurs. Also, since most HCI solutions require that you purchase the vendor’s hardware or they have a rigorous hardware compatibility list (HCL), IT needs to make room for and install new hardware.

    The Impact of Disruptive Migration

    While most organizations can complete this migration over a weekend, there is some significant impact from the process. First, it is, for the most part, an all-or-nothing process, which places much more pressure on pre-purchase evaluation. There is also the impact of being down for a weekend, which an increasing number of organizations can no longer tolerate. Finally, if the conversion does not go according to plan and extends past the weekend maintenance window, IT has to quickly roll back to the VMware environment and try the conversion again next weekend.

    VergeOS Makes VMware Exits Smooth and Gradual

    VergeOS can directly communicate with VMware and make scheduled copies of each VM as frequently as IT chooses. Also, because VergeOS can run on existing hardware, the customer can use VergeOS by using a few extra servers or carving a few nodes out of their VMware environment. The process is so seamless that many customers use VergeOS as a disaster recovery copy of their VMWare environment using our IOprotect capability. Then when you are ready, you can gradually move VMs to be solely hosted in the VergeIO environment. This process takes the pressure off the evaluation phase and provides an extended “test” of the solution while adding value and lowering costs. Most customers that start by using VergeOS for DR realize a 50% cost reduction in the DR process.

    HCI VMware Alternatives Must Improve Resiliency

    Given the ever-increasing risk to and value of data, using HCI as a VMware alternative can not come at the expense of lowering resiliency. Most solutions are surprisingly weak in these terms. The latest DCIG analysis, “Top 5 Rising Vendor HCI Software Solutions,” shows that HCI vendors are all over the place regarding data protection. Most provide some snapshot or clone capability, but not all have VM-level granularity. Most also did not provide any form of immutability to their snapshot capabilities. Finally, many solutions didn’t have asynchronous replication, which is critical for disaster recovery planning and recovery.

    HCI as a VMware Alternative

    Join DCIG and VergeIO tomorrow for our live webinar, “Overcome The Not-So-Magnificent Seven IT Challenges,” to learn how hyperconverged infrastructure (HCI) and ultraconverged infrastructure (UCI) can solve the current challenges IT organizations face, including limited resources, management complexity, and providing IT services at the Edge.

    VergeOS Improves Resiliency

    VergeOS UCI based storage services are built on a foundation of Global Inline Deduplication. Starting with deduplication instead of adding it later means you can get all the benefits without the significant overhead, the deduplication tax, that other solutions impose. As a result, our IOclone, in one feature, delivers the speed and efficiency of snapshots with the independence and resiliency of clones. They are immutable, and IT can retain and repurpose as many of them as they choose.

    HCI as a VMware Alternative

    Global Inline Deduplication combined with VergeOS’ network integration also enables powerful disaster recovery capabilities and Edge protection. Watch our on-demand virtual whiteboard session to learn more about using VergeOS for VMware Disaster recovery.

    Conclusion

    As IT professionals in small to medium-sized data centers explore alternatives to VMware, VergeOS emerges as the compelling choice. With VMware’s recent price increases, focus on large accounts, and declining support quality, organizations seek an HCI solution that meets crucial requirements while providing a seamless transition and superior data protection experience. VergeOS’ UCI design distinguishes itself from other HCI solutions by offering a non-VMware hypervisor at a lower cost, ensuring a smooth exit from VMware, and delivering a superior data protection experience.

    Filed Under: HCI Tagged With: HCI, Hyperconverged, UCI, VMware

    • Page 1
    • Page 2
    • Go to Next Page »

    855-855-8300

    Get Started

    • Versions
    • Request Tour

    VergeIO For

    • VMware Alternative
    • SAN Replacement
    • Solving Infrastructure Modernization Challenges
    • Artificial Intelligence
    • Hyperconverged
    • Server Room
    • Secure Research Computing

    Product

    • Benefits
    • Documents
    • Architecture Overview
    • Use Cases
    • Videos

    Company

    • About VergeIO
    • Blog
    • Technical Documentation
    • Legal

    © 2025 Verge.io. All Rights Reserved.