
An advanced data resilience strategy is crucial when evaluating alternatives to VMware. As organizations begin their research, they encounter many hyperconverged infrastructure (HCI) solutions. However, legitimate HCI performance and resilience concerns arise, leading many to hesitate about leaving familiar All-Flash Arrays (AFAs) and traditional three-tier architectures.
The VergeOS white paper, “Solving the HCI High-Performance Problem,” addresses these performance issues. This article focuses on advanced data resilience, detailing how VergeOS resolves common HCI resiliency limitations, enabling organizations to confidently transition away from traditional architectures and AFAs.
Executive Summary – Advanced Data Resilience
VergeOS provides a sophisticated and comprehensive advanced data resilience architecture designed to outperform traditional All-Flash Array (AFA) and Storage Area Network (SAN) solutions. Its multi-layered design includes synchronous replication, High Availability (HA) clustering, ioGuardian fault tolerance, and ioClone snapshot technology, ensuring continuous operations and superior resilience even during severe hardware failures. This technical brief details how VergeOS’s integrated solutions deliver exceptional reliability, backed by compelling real-world use cases and measurable customer outcomes.
Attend our upcoming webinar, How to Replace Your AFA, where we will cover all aspects of VMware and AFA replacement, including migration, performance, and data resiliency.
Advanced Data Resilience Foundation: Drive Protection
Architecture Overview

VergeOS implements synchronous replication to ensure immediate redundancy of data across all cluster nodes. Write operations are confirmed only after successfully synchronizing with all replicas, maintaining strict data consistency and preventing data loss, a significant advancement over traditional RAID systems. This replication occurs in real-time and utilizes global inline deduplication, minimizing storage overhead and network bandwidth requirements. Unlike traditional RAID controllers and external arrays, VergeOS’s replication mechanism efficiently mirrors only unique data segments, enhancing performance and simplifying storage management.
Operational Mechanics of Advanced Data Resilience
When a drive failure occurs, virtual machines (VMs) continue running without interruption on their original hosts. VergeOS employs advanced network protocols that transparently retrieve mirrored data from healthy cluster nodes, ensuring uninterrupted operations without performance degradation.
Advanced Data Resilience: Continuity
Failover Architecture
VergeOS’s HA clustering ensures that complete server node failures do not lead to service interruptions. In the event of a full node outage, affected virtual machines automatically migrate to healthy cluster nodes. This migration leverages already synchronized data replicas, ensuring immediate data availability and continuous service operation.
Advanced Data Resilience AND Rapid Recovery
Rigorous production environment testing demonstrates VergeOS’s capability to recover from a full server node failure within approximately 90 seconds, including a complete VM restart. Rapid recovery is achievable due to pre-existing data mirrors and streamlined failover mechanisms, outperforming traditional SAN and AFA systems, which typically experience longer downtime periods.
Intelligent Resource Orchestration
HA clustering in VergeOS features intelligent orchestration that selects the optimal target host based on current resource availability. This automated and dynamic resource allocation prevents contention, maintains high performance levels, and guarantees consistent service delivery during and after failover events.
Advanced Data Resilience: N+X Protection
Superior Multi-Fault Protection
ioGuardian technology sets VergeOS apart by maintaining continuous data access even when experiencing simultaneous failures across multiple drives and nodes. This advanced fault-tolerant mechanism surpasses the redundancy provided by traditional AFAs and competitive hyperconverged infrastructure (HCI) platforms, ensuring superior reliability in catastrophic failure scenarios.
Continuous Operation in Extreme Scenarios Delivers Advanced Data Resilience
ioGuardian ensures continuous VM operation even during severe hardware failures. It creates an independent, third copy of data stored on a separate VergeOS server(s), external to the primary production environment. When the production environment experiences multiple simultaneous node or drive failures, the ioGuardian server provides data fragments to instantly reconstruct any required data in real-time. This capability enables uninterrupted VM access, eliminating downtime or noticeable degradation during extreme failure conditions.
Technical Implementation
The ioGuardian architecture includes an external VergeOS instance that stores an independent third-party data replica. Advanced algorithms within the primary VergeOS environment dynamically leverage this external copy. As long as at least one node remains active in the production cluster, ioGuardian reconstructs and delivers necessary data fragments instantly and transparently. This design ensures continuous VM availability and operational integrity, exceeding the fault tolerance capabilities of traditional AFAs or HCI solutions.
Advanced Data Resilience: Recovery
Storage-Layer Snapshots
VergeOS’s ioClone technology provides instant snapshot capabilities directly at the storage layer without impacting the performance of running applications. Unlike traditional snapshot approaches that rely on incremental data chains or external backup systems, ioClone provides immediate, independent, and reliable recovery points.
Space-Efficient Retention
Global inline deduplication enables ioClone to store snapshots efficiently, using minimal storage resources. This efficiency allows organizations to maintain unlimited snapshots over extended periods, addressing the retention challenges and storage constraints commonly associated with traditional snapshot technologies.
Granular and Rapid Recovery
ioClone facilitates recovery at multiple granular levels—individual files, full virtual machines, or entire Virtual Data Centers (VDCs). Recovery operations complete in seconds, dramatically enhancing operational agility and ensuring compliance with rigorous data protection and recovery requirements.
Advanced Data Resilience: Networking
Eliminating Data Locality Limitations
VergeOS uses an optimized internode networking protocol designed to accelerate data transfer between cluster nodes. Unlike traditional architectures dependent on data locality, VergeOS retrieves data across nodes rapidly and efficiently. VergeOS’s deduplication engine, as it is available to the entire infrastructure, reduces network traffic by 60-80%, thereby lowering bandwidth demands and maintaining optimal performance even during fault conditions. The combination of the network protocol and data efficiency is critical in high-performance and data-intensive environments.
Accelerating Synchronous Replication and ioGuardian
The optimized networking protocol powers VergeOS’s synchronous replication and ioGuardian technologies. Synchronous replication instantly mirrors data, thanks to fast communication between nodes. Similarly, ioGuardian leverages rapid cross-node data retrieval to reconstruct data fragments instantly, providing continuous access during severe failure scenarios.
Technical Advantages
The efficiency of VergeOS internode communication results in sub-millisecond latency during cross-node data access. Extensive testing demonstrates consistent performance that exceeds that of traditional SAN or HCI solutions. This capability enhances system responsiveness, reliability, and advanced data resilience, allowing IT teams to confidently eliminate data locality constraints from infrastructure design.
Conclusion
VergeOS’s integrated, multi-layered, advanced data resilience approach delivers superior data protection, operational resilience, and infrastructure simplification. By combining synchronous replication, High Availability clustering, ioGuardian fault tolerance, and ioClone snapshot capabilities, organizations can confidently transition from traditional AFA solutions, avoiding the AFA tax, to VergeOS. For a deeper dive into these topics, register for our “Data Availability Analysis” white paper.